Gestão de Projetos

Análises Quantitativas

Por: João Lucas e Rosana Duarte

Revisão: Prof. Dr. Sérgio Alves - www.profsergio.net

Áreas de Conhecimento em Gerenciamento de Projetos (PMI)

1- Dadas as "ferramentas" quantitativas de análise relacione-as com área do PMI considerando contato prioritário e secundário.

Análise Quantitativa	Área PMI – Prioritária		
CT - Custo Total.	Aquisições - Custos		
TR - Taxa de Retorno.	Custos		
VPL - Valor Presente Líquido.	Custos		
PERT – Programa de Avaliação e Técnica de Revisão.	Tempo - Riscos		
LEC – Lote Econômico de Compras.	Aquisições		
VME – Valor Monetário Estimado.	Riscos – Custos		
Seis Sigmas.	Qualidade - Riscos		

2- Dadas as "ferramentas" quantitativas de análise indique a fórmula de cada uma delas.

Análise Quantitativa	Fórmula
Custo Total	CT=CF+(CV*QTD) P.E(Q)= <u>CF1°Class.</u> - <u>CF2°Class.</u> CV2°Class CV2°Class.
Taxa de Retorno	Rendimento dividido por Investimento
VPL	VF/(1+i) ⁿ VP1+VP2+()-INVESTIMENTO Se=0 Indif. Se>0 Aceitável, Se<0 Rejeite.
PERT	TE=TO+[(4*TPM)+TP]/6 DP=(TP-TO)/6 VAR=DP ²
	DPTOTAL=√Somatórios das variâncias Obs.: √ = Simboliza Raiz Quadrada
LEC	√(2*DEMANDA*CUSTO DE PEDIR) CUSTO DE MANTER
VME	PROBABILIDADE*IMPACTO Obs.: Probabilidade é %. Impacto é R\$. (Converter a probabilidade em decimal dividindo por 100)

3-Para escolha de um projeto a partir da estimativa de sua **Taxa de Retorno**, usase: "TR=Rendimento/Investimento". Dado que o "Projeto Y" demandará investimento de R\$ 380.000,00 e estima-se para ele um rendimento de R\$ 520.000,00 teremos:

Portanto aceito, pois a taxa de retorno é maior que "1".

4 - Sabendo-se que o contratante do projeto exige contratualmente uma qualidade +/- 3 sigmas (desvio-padrão de +/- 3 sigmas), qual a quantidade máxima de produtos que poderão estar fora da qualidade, dentre 1400 produtos que serão entregues semanalmente, considerando-se uma distribuição normal 6 sigmas?

[(1400/100) * 0,27] = **14*0,27=3,78.** (±) 4 unidades (variável discreta).

5- Calcule o VPL – Valor Presente Líquido do projeto, sabendo que o investimento é de R\$210.000,00 e a taxa é de 15% ano:

Período	Rendimento	/ (1+i) ⁿ	Valor Presente	
1 /	R\$ 75.000,00	1+0,151=1,150000	65.217,39	
2	R\$ 85.000,00	1+0,152=1,322500	64.272,21	
3	R\$ 140.000,00	1+0,15³=1,520875	92.052,27	
			=221.541,87	

VPL Projeto=(vp1+vp2+vp3)-investimento= 221.541,87-210.000,00= 11.541,87.

Dado que o VPL total (subtraído o investimento) é "> 0" o projeto é considerado "Aceitável".

6- A partir da tabela a seguir, monte os três PERT'S para o projeto:

Atividade	ТО	TMP	TP	TE	DESVIO PADRÃO	VARIÂNCIA
A	31	31	41	32,67	1,67	2,78
В	55	60	70	60,83	2,50	6,25
С	39	48	53	47,33	2,33	5,44
PROJETO	125	139	164	141 dias	3,80	14,47

Lembre-se: O Desvio Padrão Total do Projeto NÃO é um somatório. É a Raiz Quadrada do Somatório da Variância.

-3xDP	-2xDP	-1xDP	DURAÇÃO	1xDP	2xDP	3xDP
-11,40	-7,60	-3,80		3,80	7,60	11,40
	\ \ \	\ \				
129,60	133,40	137,20	141	144,80	148,60	152,40

7- O gestor do projeto casinha feliz cujo escopo é a construção de casas populares, estima com sua equipe que a demanda de cimento para o período de 1 ano será de 50 mil sacas. Sabe-se que cada pedido feito ao fornecedor gera um custo administrativo de R\$ 40,00. O custo de manter (administrar em estoque) cada saca de cimento será de R\$ 0,25. Você como Gerente de Aquisições necessita calcular o LEC – Lote Econômico de Compras.

a) LEC= Raiz quadrada [(2*D*CP)/CM]=
$$\sqrt{ [(2*50.000*40) / 0,25] }$$

$$\sqrt{ (4.000,00 / 0,25) }$$

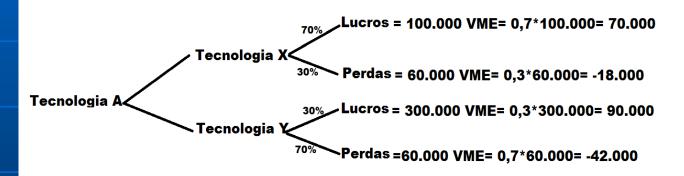
$$\sqrt{ 16.000,00 }$$
 LEC= 4,000.

b) Qual será o número de pedidos por período? Pedidos por período= Demanda/LEC.

c) Qual será o intervalo entre pedidos? Intervalo entre pedidos= Período/Pedidos por período.

8- Calcule os custos totais para cada processo e determine qual a tecnologia é a mais viável (com base no menor CT), considerando uma quantidade de 12 unidades a serem produzidas durante o projeto:

	Custos Fixos	Custos Variaveis
Processo A – Usando tecnologia W=	R\$ 80.000,00	R\$35.000,00
Processo B - Usando tecnologia X=	R\$ 130.000,00	R\$ 25,000,00
Processo C – Usando tecnologia Y=		R\$ 35.000,00
Processo D - Usando tecnologia Z=	R\$ 131.000,00	R\$ 24.000,00


Exemplo processo A: $80.000,00 + (12 \times 35.000,00) = 500.000,00$ Vide o resultado para cada processo na ilustração a seguir:

Custo	s Fixos	Custo	s Variávies	Custo T	otal do Processo	Indexação/	Classificação
R\$	80.000,00	R\$	35.000,00	R\$	500.000,00	4	ō
R\$	130.000,00	R\$	25.000,00	R\$	430.000,00	3	ō
R\$	-	R\$	35.000,00	R\$	420.000,00	2	ō
R\$	131.000,00	R\$	24.000,00	R\$	419.000,00	1	ō

9- Com base em VME monte um Árvore Decisória sabendo que a área de Gestão de Riscos fez o seguinte levantamento(com base em seu portfólio de projetos similares):

A – "Tecnologia X" em 70% dos projetos resultou lucro de R\$ 100 mil e em 30% dos projetos prejuízo de R\$ 60 mil.

A – "Tecnologia Y" em 30% dos projetos resultou lucro de R\$ 300 mil e em 70% dos projetos prejuízo de R\$ 60 mil.

Tecnologia X= 70.000-18.000=52.000

VME de Risco do Projeto= 52.000+48.000=

Tecnologia Y= 90.000-42.000=48.000

R\$ 94.000.

10- Para que a sua empresa seja contratada para execução do Projeto X, o contratante exige como cláusula contratual que você garanta uma "QoS - Qualidade de Serviço" de pelo menos SIGMA-3 (Concebido pela Motorola). Considerando que a quantidade de produtos que o projeto gerará é de 1 milhão, qual será a estimativa de defeitos (PPM – Partes por milhão) "tolerável" (ou prevista) para cada Sigma?

R = Para o Sigma3 temos: $1.000.000 \times (100 - 99,73)$. Logo, $1.000.000 \times 0,27 = +2.700$ Unidades com possível erro/defeito/falha (em suma, fora da qualidade)

Veja a estimativa para cada um dos seis sigmas na tabela a seguir:

Limites de especificação	Área (%)	100 (-) área	Estimativa de Defeitos
1º Sigma	68,27	31,73	317300,000
2º Sigma	95,45	4,55	45500,000
3º Sigma	99,73	0,27	2700,000
4º Sigma	99,9937	0,0063	63,000
5º Sigma	99,999943	0,000057	0,570
6º Sigma	99,9999998	0,0000002	0,002